The interaction of neuroimmunology, neuromodulator, and neurotransmitter with nociceptor and MAPK signaling

Dewa Ayu Mas Shintya Dewi , Made Wiryana

Dewa Ayu Mas Shintya Dewi
Department of Anesthesiology, Pain Management, and Intensive Care Faculty of Medicine, Udayana University, Sanglah General Hospital, Denpasar-Bali, Indonesia. Email:

Made Wiryana
Department of Anesthesiology, Pain Management, and Intensive Care Faculty of Medicine, Udayana University, Sanglah General Hospital, Denpasar-Bali, Indonesia
Online First: April 28, 2019 | Cite this Article
Dewi, D., Wiryana, M. 2019. The interaction of neuroimmunology, neuromodulator, and neurotransmitter with nociceptor and MAPK signaling. Bali Journal of Anesthesiology 3(1): 44-49. DOI:10.15562/bjoa.v3i1.134


Physiological pain is a protection mechanism against tissue damage or potential tissue damage. Inflammation pain is followed by tissue damage due to temperature, mechanical and chemical stimuli which increase crosstalk between neuron nociceptor, immune system, neuromodulator and neurotransmitter, and MAPK (Mitogen Activating Protein Kinase) signal. Initially, immune cell is produced at the primary afferent nerve endings and spinal cord, modulate thermal sensitivity and mechanic through MAPK signaling, then neuromodulator and neurotransmitter at the afferent nerve endings will regulate the innate immune response, adaptive and vascular



Aydede M. Defending the IASP definition of pain. The Monist. 2017; 100(4): 439-64. DOI: 10.1093/monist/onx021

Latremoliere A, Latini A, Andrews N, et al. Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Article Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway. Neuron. 2015; 86(6): 1393–406. DOI: 10.1016/j.neuron.2015.05.033

Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009; 10(9): 895–926. DOI: 10.1016/j.jpain.2009.06.012

Ronchetti S, Migliorati G, Delfino DV. Association of inflammatory mediators with pain perception. Biomedicine & Pharmacotherapy. 2017; 96: 1445-62. DOI: 10.1016/j.biopha.2017.12.001

Gold MS, Caterina M. Molecular biology of the nociceptor/transduction. In the sense: a comprehensive reference. 2010; 5: 43-73. DOI: 10.1016/B978-012370880-9.00141-9

Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010; 120(11): 3760–72. DOI: 10.1172/JCI42843

Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 2010; 16(11): 1248-57. DOI: 10.1038/nm.2235

Xu J, Zhu M Di, Zhang X, et al. NFκB-mediated CXCL1 production in spinal cord astrocytes contributes to the maintenance of bone cancer pain in mice. J Neuroinflammation. 2014;11(38): 1–13. DOI: 10.1186/1742-2094-11-38

Lyman M, Lloyd DG, Ji X, et al. Neuroinflammation : the role and consequences. Neurosci Res. 2014; 79: 1-12. DOI: 10.1016/j.neures.2013.10.004

Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain : involvement of inflammatory immune cells, immune-like glial cells, and cytokines. J Neuroimmunol. 2010; 229(1-2): 26-50. DOI: 10.1016/j.jneuroim.2010.08.013

Yezierski RP, Hansson P. Inflammatory and neuropathic pain from bench to bedside : what went wrong ? J Pain. 2018; 19(6): 571-588. DOI: 10.1016/j.jpain.2017.12.261

Hansson E. Long-term pain, neuroinflammation, and glial activation. Scand J Pain. 2010; 1(2): 67-72. DOI: 10.1016/j.sjpain.2010.01.002

Linte CA, Camp JJ, Rettmann ME, et al. Image-based modeling and characterization of RF ablation lesions in cardiac arrhythmia therapy. Proceeding of SPIE-the International Society for Optical Engineering. 2013; 8671. DOI: 10.1117/12.2008529

Newton K, Dixit VM, Wrana JL, et al. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012; 4(3). pii: a006049. DOI: 10.1101/cshperspect.a006049

Walker AK, Kavelaars A, Heijnen CJ, et al. Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev. 2013; 66(1): 80-101. DOI: 10.1124/pr.113.008144

Pouwels SD, Heijink IH, Hacken NHT, et al. DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol. 2014; 7(2): 215-26. DOI: 10.1038/mi.2013.77

Anders H, Schaefer L. Beyond tissue injury - damage-associated molecular patterns, toll-like receptors, and inflammation also drive regeneration and fibrosis. J Am Soc Nephrol. 2014; 25(7): 1387–400. DOI: 10.1681/ASN.2014010117

Jounai N, Kobiyama K, Takeshita F, et al. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol. 2013; 2: 168. DOI: 10.3389/fcimb.2012.00168

Newton K, Dixit VM, Wrana JL, et al. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012; 4(3). pii: a006049. DOI: 10.1101/cshperspect.a006049

Schaefer L. Complexity of danger : The diverse nature of damage-associated molecular patterns. J Biol Chem. 2014; 289(51): 35237-45. DOI: 10.1074/jbc.R114.619304

Ji RR, Xu Z, Gao Y. Emerging targets in neuroinflammation- driven chronic pain. Nat Rev Drug Discov. 2014; 13(7): 533-48. DOI: 10.1038/nrd4334

Ji R-R, Gereau RW, Malcangio M, et al. MAP kinases and pain. Brain Res Rev. 2009; 60(1): 135–48. DOI: 10.1016/j.brainresrev.2008

Woolf CJ, Costigan M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci U S A. 1999; 96(14): 7723–30. Available at:

Bhave G, Gereau RW. Posttranslational mechanisms of peripheral sensitization. J Neurobiol. 2004; 61(1): 88-106. DOI: 10.1002/neu.20083

Uttam S, Wong C, Amorim IS, et al. Translational profiling of dorsal root ganglia and spinal cord in a mouse model of neuropathic pain. Neurobiol Pain. 2018; 4: 35–44. DOI: 0.1016/j.ynpai.2018.04.001

Grzonka Z, Jankowska E, Kasprzykowski F, et al. Structural studies of cysteine proteases and their inhibitors. Acta Biochim Pol. 2001; 48(1): 1–20. DOI:

Binshtok AM, Wang H, Zimmermann K, et al. Nociceptors are interleukin-1 sensors. J Neurosci. 2008; 28(52): 14062–73. DOI: 10.1523/JNEUROSCI.3795-08.2008

Ebbinghaus M, Uhlig B, Richter F, et al. The role of interleukin-1β in arthritic pain: main involvement in thermal, but not mechanical, hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum. 2012; 64(12): 3897–907. DOI: 10.1002/art.34675

Galliher-Beckley AJ. Caspase-1 activation and mature interleukin-1β release are uncoupled events in monocytes. World J Biol. 2013; 4(2): 30-34. DOI: 10.4331/wjbc.v4.i2.30

Sorge RE, Mapplebeck JCS, Rosen S, et al. B Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci. 2015; 18(8): 1081-3. DOI: 10.1038/nn.4053

Taves S, Berta T, Liu DL, et al. Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: sex-dependent microglial signaling in the spinal cord. Brain Behav Immun. 2016; 55: 70–81. DOI: 10.1016/j.bbi.2015.10.006

Cook AD, Christensen AD, Tewari D, et al. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 2018; 39(3): 240-255. DOI: 10.1016/

Boettger MK, Hensellek S, Richter F, et al. Antinociceptive effects of tumor necrosis factor α neutralization in a rat model of antigen-induced arthritis: Evidence of a neuronal target. Arthritis Rheum. 2008; 58(8): 2368–78. DOI: 10.1002/ART.23608

Huo M, Cui X, Xue J, et al. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J Surg Res. 2013; 180(1): e47–54. DOI: 10.1016/J.JSS.2012.10.050

Gudes S, Barkai O, Caspi Y, et al. The role of slow and persistent TTX-resistant sodium currents in acute tumor necrosis factor-α-mediated increase in nociceptors excitability. J Neurophysiol. 2015; 113(2): 601–19. DOI: 10.1152/jn.00652.2014

Sorkin LS, Doom CM. Epineurial application of TNF elicits an acute mechanical hyperalgesia in the awake rat. J Peripher Nerv Syst. 2000; 5(2): 96–100. Available at:

Constantin CE, Mair N, Sailer CA, et al. Endogenous tumor necrosis factor (TNF ) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model. J Neurosci. 2008; 28(19): 5072–81. DOI: 10.1523/JNEUROSCI.4476-07.2008

Cunha TM, Verri WA, Silva JS, et al. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci U S A. 2005; 102(5): 1755– 60. DOI: 10.1073/pnas.0409225102

Lima FO, Souza GR, Verri WA, et al. Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors:involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain. 2010; 151(2): 506–15. DOI: 10.1016/j.pain.2010.08.014

Sawynok J. Adenosine receptor targets for pain. Neuroscience. 2016; 338: 1-8. DOI: 10.1016/j.neuroscience.2015.10.031

Burnstock G, Sawynok J. Adenosine triphosphate and adenosine receptors and pain. Pharmacol Pain. 2010; 303–26. Available at:'s%20PDF%20file%20copies/CV1419.pdf

Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol. 2003; 69(5): 313–40. Available at:

Fredholm BB. Adenosine--a physiological or pathophysiological agent? J Mol Med. 2014; 92(3): 201–6. DOI: 10.1007/s00109-013-1101-6

Rahman W, Dickenson AH. Voltage-gated sodium and calcium channel blockers for the treatment of chronic inflammatory pain. Neurosci Lett. 2013; 557 Pt A: 19-26. DOI: 10.1016/J.NEULET.2013.08.004

Magni G, Ceruti S. The purinergic system and glial cells: emerging costars in nociception. Biomed Res Int. 2014; 2014; 495789. DOI: 10.1155/2014/495789

Peana AT, Rubattu P, Piga GG, et al. Involvement of adenosine A1 and A2A receptors in (-)-linalool-induced antinociception. Life Sci. 2006; 78(21): 2471–4. DOI: 10.1016/j.lfs.2005.10.025

Ramos-Zepeda G, Herrero JF. Interaction of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and opioid receptors in spinal cord nociceptive reflexes. Life Sci. 2013; 93(5–6): 233–9. DOI: 10.1016/j.lfs.2013.06.017

Yamaoka G, Horiuchi H, Morino T, et al. Different analgesic effects of adenosine between postoperative and neuropathic pain. J Orthop Sci. 2013; 18(1): 130–6. DOI: 10.1007/s00776-012-0302-0

Katz NK, Ryals JM, Wright DE. Central or peripheral delivery of an adenosine A1receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy. Neuroscience. 2015; 285: 312–23. DOI: 10.1016/j.neuroscience.2014.10.065

Hassani FV, Rezaee R, Sazegara H, et al. Effects of silymarin on neuropathic pain and formalin-induced nociception in mice. Iran J Basic Med Sci. 2015; 18(7): 715-20. Available at:

Schulte G, Fredholm BB. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal. 2003; 15(9): 813–27. Available at:

Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010; 141(7): 1117–34. DOI: 10.1016/j.cell.2010.06.011

Pardon MC. Role of neurotrophic factors in behavioral processes: implications for the treatment of psychiatric and neurodegenerative disorders. Vitam Horm. 2010; 82: 185-200. DOI: 10.1016/S0083-6729(10)82010-2

J. Allen S, J. Watson J, Dawbarn D. The neurotrophins and their role in Alzheimer's disease. Curr Neuropharmacol. 2011; 9(4): 559-73. DOI: 10.2174/157015911798376190

Itakura A, Matsuki Y, Tanaka M, et al. Lysophosphatidylcholine enhances NGF-induced MAPK and Akt signals through the extracellular domain of TrkA in PC12 cells. FEBS Open Bio. 2013; 3: 243-51. DOI: 10.1016/j.fob.2013.05.003

Chowdary PD, Che DL, Cui B. Neurotrophin signaling via long-distance axonal transport. Annu Rev Phys. 2012; 63: 571-94. DOI: 10.1146/annurev-physchem-032511-143704

Shen J, Maruyama IN. Nerve growth factor receptor TrkA exists as a preformed, yet inactive, dimer in living cells. FEBS Lett. 2011; 585(2): 295–9. DOI: 10.1016/j.febslet.2010.12.031

Ji R, Samad TA, Jin S, et al. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. 2002; 36(1): 57–68. Available at:

Mills CD, Nguyen T, Tanga FY, et al. Characterization of nerve growth factor-induced mechanical and thermal hypersensitivity in rats. Eur J Pain. 2013; 17(4): 469–79. DOI: 10.1002/j.1532-2149.2012.00202.x.

Eskander MA, Ruparel S, Green DP, et al. Persistent nociception triggered by nerve growth factor (NGF) is mediated by TRPV1 and oxidative mechanisms. J Neurosci. 2015; 35(22): 8593–603. DOI: 10.1523/JNEUROSCI.3993-14.2015

Yu SJ, Xia C mei, Kay JC, et al. Activation of extracellular signal-regulated protein kinase 5 is essential for cystitis- and nerve growth factor-induced calcitonin gene-related peptide expression in sensory neurons. Mol Pain. 2012; 8(1): 48. DOI: 10.1186/1744-8069-8-48

Shadiack AM, Sun Y, Zigmond RE. Nerve Growth Factor Antiserum Induces Axotomy-Like Changes in Neuropeptide Expression in Intact Sympathetic and Sensory Neurons. J Neurosci. 2001; 21(2): 363–71. DOI: 10.1523/JNEUROSCI.21-02-00363.2001

Yu L, Sun L, Wang M, et al. Research progress of the role and mechanism of extracellular signal-regulated protein kinase 5 ( ERK5 ) pathway in pathological pain. J Zhejiang Univ Sci B. 2016; 17(10): 733–41. DOI: 10.1631/jzus.B1600188

Bardoni R. Role of presynaptic glutamate receptors in pain transmission at the spinal cord level. Curr Neuropharmacol. 2013; 11(5): 477-83. DOI: 10.2174/1570159X11311050002

Wierenga CJ. Live imaging of inhibitory axons: Synapse formation as a dynamic trial-and-error process. Brain Res Bull. 2017; 129: 43–9. DOI: 10.1016/j.brainresbull.2016.09.018

Carlton SM. Glutamate receptors and their role in acute and inflammatory pain. In: Glutamate receptors in peripheral tissue. Gill S, Pulioda O (Eds). New York, Kluwer Academic/Plenum Publishers, 2005, pp 87-96.

Rygh LJ, Svendsen F, Hole K, et al. Increased spinal N-methyl-D-aspartate receptor function after 20 h of carrageenan-induced inflammation. 2001; 93(1): 15–21. Available at:

Li L, Wu Y, Bai Z, et al. Blockade of NMDA receptors decreased spinal microglia activation in bee venom-induced acute inflammatory pain in rats. Neurol Res. 2017; 39(3): 271-80. DOI: 10.1080/01616412.2017.1281198

Fernando L, Monteiro C, Araldi D, et al. Inflammatory sensitization of nociceptors depends on activation of NMDA receptors in DRG satellite cells. Proc Natl Acad Sci U S A. 2014; 111(51): 18363–8. DOI: 10.1073/pnas.1420601111

Wang JQ, Fibuch EE, Mao L. Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem. 2007; 100(1): 1–11. DOI:10.1111/j.1471- 4159.2006.04208.x

No Supplementary Material available for this article.
Article Views      : 354
PDF Downloads : 171